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’ INTRODUCTION

In experiments involving two-color microarrays, two sets of
biological samples are prepared in parallel with different fluor-
escent labels (e.g., Cy3 and Cy5) and hybridized simultaneously
to probes on the array, that is, one treated and the other untreated
for the test and control, respectively (Figure 1). Variation of the
gene-expression levels under any treatments such as mutation,
temperature, chemical modification or time upon the respective
samples is quantitatively measured by the relative intensity ratios
of the optical signals from the probe spots emitting the two
different fluorescent signals. This high-throughput microarray
technology, which makes it feasible for researchers to investigate
expression data from tens of thousands of genes simultaneously,
is now accepted as a commonly used method in both basic and
applied fields of biological research.

In the wealth of the genetic data produced so far, the analysis
of massive volumes of array data sets has become the central
challenge of this innovative strategy.1�3 The essential tasks of
microarray analysis involve (i) the grouping of similar genes
in terms of the expression level (i.e., classification/clustering),
(ii) the identification of significantly differentially expressed
genes (i.e., outlier detection), and (iii) the investigation of the
interaction among the genes as organized in biological pathways.
From the biological information of some known genes, the

function of unknown genes can often be inferred through the
so-called functional classification of gene expression. A group of
differentially expressed genes can be identified by sorting out
genes by either the relative distance measure in gene expression
space or by using any, rather empirical, threshold cutoff value. The
interactions among genes can be statistically investigated by tracking
the variation of expression levels of the potentially relevant genes.

Statistical learning algorithms are an essential tool for the
identification of differentially expressed genes from microarray
data. However, the results achieved from a single method might
be misleading, resulting in the wrong conclusion since different
methods often return rather different results.4�6 Univariate-
based statistical methods, e.g. ordinary t-statistic, need to be
modified for the comparative analysis of the microarray data with
a multivariate nature. When focusing on one specific statistical
learning method, it is assumed that one knows the correct metric
of the manifold structure on which the data exist. We relax that
assumption by rationally merging multiple algorithms and take
advantage of both linear and nonlinear metric of data manifold.
In this manner, we acknowledge that the data streams coming
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ABSTRACT: High-throughput microarray technology has enabled the simultaneous
measurement of the abundance of tens of thousands of gene-expression levels, opening
up a new variety of opportunities in both basic and applied biological research. In the
wealth of genomic data produced so far, the analysis of massive volume of data sets has
become a challenging part of this innovative approach. In this study, a series of microarray
experimental data from Yersinia pestis (Y. pestis), the etiologic agent of plague in humans,
were analyzed to investigate the effect of the treatments with quorum-sensing signal
molecules (autoinducer-2 and acyl-homoserine lactones) andmutation (ΔypeIR,ΔyspIR,
and ΔluxS) on the variation of gene-expression levels. The gene-expression data have
been systematically analyzed to find potentially important genes for vaccine development
by means of a coordinated use of statistical learning algorithms, that is, principal
component analysis (PCA), gene shaving (GS), and self-organizing map (SOM). The
results achieved from the respective methods, the lists of genes identified as differentially
expressed, were combined to minimize the risk that might arise when using a single method. The commonly detected genes from
multiple data mining methods, which reflect the linear/nonlinear dimensionality and similarity measure in gene-expression space,
were taken into account as the most significant group. In conclusion, tens of potentially biologically significant genes were identified
out of over 4000 genes of Y. pestis. The “active” genes discovered in this study will provide information on bacterial genetic targets
important for the development of novel vaccines.
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from different types of genes may not necessarily be in a single
manifold structure. Jeffery et al.5 investigated the lists of differ-
entially expressed genes from 9 different microarray data by using
10 different statistical methods. They found out that all the
dissimilar methods distinguish almost entirely different gene list,
depending on the data set used. At present, the single-most
efficient procedure for combining the outcomes from multiple
algorithms has not been properly formulated yet. The results
achieved from diverse analysis techniques would require the use
of appropriate procedure for combining them. As shown in most
of the published literature, the validity of a newly suggested
method (or algorithm) to extract knowledge from microarray
data can only be demonstrated by verifying with the training of
already-known data resource, hoping that the method can be
equally useful for a new unknown system. The work by Famili
et al.4 points out that the use of multiple statistical methods
(i.e., rank products, significance analysis of microarray, and
t test) could lead to better results than any of single method by
equally weighting the outcome from each method. In fact, it
becomes more critical aspect when new biological data, in
which the available information is limited, are explored for
practical application.

In this paper, we show a biologically significant (i.e., differen-
tially expressed) gene list identified from microarray data by
using a rational integration of multiple statistical learning algo-
rithms which take into account more general similarity metric of
high dimensional gene-expression space. That is, gene-expression

data have been systematically analyzed by means of unsupervised
multivariate data mining strategies, that is, principal component
analysis (PCA), gene shaving (GS), and self-organizing map
(SOM). Microarray experiments of Yersinia pestis (Y. pestis), a
bubonic and pneumonic plague bacterium, were performed to
investigate the effect of the treatments with quorum-sensing-
signal molecules, autoinducer-2 (AI-2) and acyl-homoserine
lactones (AHLs), and the mutations ΔypeIR,ΔyspIR, andΔluxS
on gene-expression levels. All of these five individual treatments
were implemented at the controlled temperature of 37 �C.Out of
over 4000 genes, tens of distinct genes were commonly identified
using different analysis methods, and those genes can be con-
sidered as the most biologically significant genes for further
investigation to develop novel vaccine materials. We suggest that
the highly ranked “active” genes detected from the overlapping
gene lists of multivariate data mining methods need to be
studied with a priority. After the fundamental algorithm of each
approach is described, the level of agreement among the lists of
differentially expressed genes declared by the respective methods

Figure 1. Schematic of the microarray process. The process begins with
the construction of the array by spotting gene-unique oligonucleotides
(the probes) to a chemically modified glass substrate. Targets are
generated from control and experimental samples by extracting the
RNA, converting to cDNA and labeling the two targets with different
fluorescent dyes (e.g., Cy3 and Cy5). The two differentially labeled
targets preparations are mixed and hybridized to the array. Following
washing, the array is scanned using a laser scanner, the signal intensity for
each spot is quantified, and the data is analyzed statistically for
differentially expressed genes.

Table 1. Design of Microarray Experiments (Controlled
Temperature 37�C)

signal studies (wild type) mutant studies (OD 1.0)

control vs 3 signals

(Al-2 and two AHLs)

wild type vs triple mutants

(ΔluxS, ΔypeIR, ΔyspIR)

control vs Al-2 wild type vs ΔluxS mutant

control vs two AHLs

Figure 2. Schematic of microarray data table (Gij denote gene-expres-
sion levels) and the corresponding parallel plot of the fold change of
gene expressions across five different samples. Each straight line shows
the variation of the expression level of individual genes under the
different microarray conditions. The positive and negative value of fold
change corresponds to up-regulated and down-regulated gene expres-
sions, respectively. For the definition of each sample, see Table 1.
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is taken into account along with the comparison to some known
biological information.

’EXPERIMENTAL PROCEDURES

Microarray Experimentation. Bacterial Strains and Culture
Conditions. The strains Y. pestis CO92 ΔPgm (subsequently
referred to as wild type), Y. pestisCO92ΔPgmΔluxS, and Y. pestis
CO92 ΔPgm ΔluxS ΔypeIR ΔyspIR were used in this study. The
bacterial cells were grown in brain heart infusion broth plus 2.5mM
CaCl2 at 37 �C. Cell growth wasmonitored on a Bausch and Lomb
Spectronic 20 Spectrophotometer at wavelength 600 nm.
Experimental Design and Microarray Design. A schematic of

the microarray process is shown in Figure 1. The theory for the
two color array experiment is that two samples (control and
experimental) can be compared simultaneously on the same
array so that any spot-to-spot variation is encountered by both
samples. This reduces the biological variation that is inherent to
these types of experiments. In this analysis, there are five
microarray comparisons, three are signals added-in studies
(wild type vs added-in AI-2, wild type vs only AHLs added-in,
and wild type vs added-in all three signals), and two mutant
comparison studies (wild type vs ΔPgm ΔluxS and wild type vs
ΔPgm ΔluxS ΔypeIR ΔyspIR). For the three added-in signal
studies, overnight wild type cultures were washed twice with PBS
buffer to remove the endogenous quorum sensing signals, the
cells were diluted 1:100 in fresh culture medium, and then the
cells were incubated for 2 h at 37 �C. Purified signals were then
added to the cultures at the following concentrations: AI-2 (500
nM final concentration), AHLs (5 μM N-(3-oxooctanoyl)-
L-homoserine lactone and N-hexanoyl-DL-homoserine lactone)

either as AI-2 alone, AHLs alone or all three signals. The control
consisted of cells grown and treated under the same conditions
without added signals. After 4 h of induction, all of the cultures
were centrifuged and RNA prepared as described below.
For the mutant studies, overnight cultures of wild type,ΔPgm

ΔluxS and ΔPgm ΔluxS ΔypeIR ΔyspIR strains were diluted
1:100 in fresh culture medium and incubated at 37 �C until the
cell density reached OD600 = 1.0, about 10 h. The cells from each
culture were collected and RNA isolated as below. For each array
comparison, six independent biological replicates were performed.
RNA samples from treated cultures were paired with six

independent RNA samples from control cultures. For three
arrays, the control RNA samples were labeled with Cy3 dye and
the treatment RNA samples were labeled with Cy5 dye; the dyes
were reversed for the other three arrays to account for any dye bias.
RNA Isolation, Target Generation, and Hybridization. All of

the cell pellets were treated with RNAprotect Bacterial Reagent
(Qiagen, Valencia, CA) and stored at�70 �C. RNAwas extracted
from frozen cell pellets using the RNeasy Mini kit (Qiagen). After
extraction, the RNAs were treated with DNase I (Ambion, Austin,
Texas) at 37 �C for 30 min to remove genomic DNA. The RNAs
were purified and concentrated by Microcon Ultracel/YM 30.
Aminoallyl-labeled cDNAs were generated by reverse tran-

scription reactions containing 10 μg of total RNA, 10 μg of
random hexamer primers (Integrated DNA Technologies, Iowa
City, IA), 1 � RT buffer, 10 mM dithiothreitol, 300 U Super-
script III reverse transcriptase (Invitrogen, San Diego, CA),
500 μM final concentration each of dATP, dCTP, and dGTP,
100μM final concentration dTTP, and 400μM final concentration
aminoallyl dUTP (Fermentas, Glen Burnie, MD). The reaction
was incubated overnight at 46 �C. RNAs were hydrolyzed with

Figure 3. Pairwise comparison of the expression levels (fold changes are expressed in base 2 logarithmic scale) of 4,254 genes of Y. pestis characterized by
the five different microarray conditions. Data points colored in red shown at the [AI-2 vs 3 signals] plot of the upper right panel are outlying genes
detected by Mahalanobis distance measure (F-quantile = 0.99). Most of the data points are clustered together and some outlying data points are spread
around themain cluster. Depending on the direction that the outliers are positioned, it can be determined that whether the genes are highly differentially
expressed (up- or down-regulated) in only one or both of the microarray condition.
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10 mM final concentration EDTA and 10 mM final concentra-
tion sodium hydroxide for 10 min at 65 �C, and the solutions
were neutralized with 500mM final concentration of HEPES buffer
(pH 7.0). The cDNA targets were then purified using the Ultra-
CleanPCRClean-Upkit (MoBioLaboratories, Carlsbad,CA).The
following coupling of Cy3 or Cy5 dyes (GEHealthcare, Piscataway,
NJ) to the purified aminoallyl-labeled cDNA was performed in a
total 17.5 μL reaction volume including 10 μL of nuclease-free
water, 1.5 μL of 100mM sodium bicarbonate (pH 8.7), and 6 μL of
dye. The reactionwas incubated at room temperature in the dark for
3 h. The dye labeled cDNAswere then purified using theUltraClean
PCR Clean-Up kit (MoBio Laboratories) and dye incorporation
efficiency evaluated by ND-1000 NanoDrop spectrophotometry
(NanoDrop Techologies, Wilmington, DE).
Microarray hybridization and postwashes were performed

using a Lucidea Slidepro Hybridization Station (GE Healthcare,
Piscataway, NJ). Corresponding equal amounts of dye labeled
cDNA targets were mixed and dried by Thermo Scientific Savant
DNA SpeedVac Concentrators. The mixed targets were sus-
pended in 225μL of long oligo hybridization solution (Corning),
incubated at 95 �C for 5 min, centrifuged (10 000� g, 4 min), and
kept at room temperature until injection into the hybridization
station. The hybridization lasted for 16 h at 42 �C and washes were
performedwith a series of buffers (2� saline-sodium citrate (SSC),
0.1% SDS; 1� SSC, and 0.1� SSC) by the hybridization station
and dried by centrifugation at 1500 � g for 30 s.
Data Acquisition, Normalization, and Data Analysis. The

hybridized arrays were scanned three times under varying laser
power and photomultiplier tube values using a ScanArray HT
scanner (Perkin-Elmer) to detect Cy3 and Cy5 signals. The

images were quantified using the softWorRx Tracker analysis
software package (Applied Precision, Inc., Issaquah, WA). Spot-
specific mean signals were corrected for background, log trans-
formed, and adjusted to a common median. The median of these
adjusted-log-background-corrected signals across multiple scans
was then computed for each spot to obtain one value for each
combination of spot, array, and dye channel. A separate mixed

Figure 4. Pairwise comparison of the expression levels (fold changes are expressed in base 2 logarithmic scale) of 4,254 genes of Y. pestis projected to the
principal component (PC) space. The variance of the gene-expression levels accounted for by each PC (in percentile) is shown in the bar chart on the
upper right corner.

Figure 5. Outlier identification analysis plot. Data points above the blue
guide line (threshold cutoff distance = 3.886869) indicate 129 outlying
genes determined by the Mahalanobis-distance (F-quantile = 0.99).
Among those identified genes, genes with FC < 1.3 or p-value > 0.05 in
all five experiments have been removed from the list.
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linear model was constructed for each probe sequence using the
normalized data.7 The t tests for comparison between treatment
and control for each probe were conducted. The p-values from
these tests were converted to q-values using themethod of Storey
and Tibshirani.8 The q-values were used to approximate the false
discovery rate (FDR) for any given p-value as described by
Benjamini and Hochberg.9 Fold changes of the expression
between treatment and control were estimated for each probe
by taking the inverse natural log 2 of the estimated mean
treatment difference. The GEO supergroup number for 5
microarray data is series GSE22850 (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?token=xhcbrqscuokoclu&acc=GSE22850).
Multivariate Data Mining Algorithms. Suppose a microarray

data set,M, that consists of an i � j matrix, where i rows denote
i genes (e.g., i = 4254 in this study) and j columns correspond to
j different samples or conditions (e.g., j = 5 in this study).

The individual gene is positioned in the j-dimensional space
according to the corresponding expression level. That is, the
coordinates of gene space represent the expression levels of the
genes under various conditions. Each univariate microarray data
set achieved from the five different conditions shown in Table 1
comprises a column of a 5-dimensional data matrix, which is
referred to as a gene-expression profile. Then the algorithms
detailed below are applied for the reduction of data dimension-
ality, the measure of the similarity of genes, and the detection of
highly regulated genes. For the description of gene-expression
levels, logarithmic fold change (i.e., the difference in logarithmic
expressions of each sample) was used.
Principal Component Analysis (PCA). Principal component

analysis (PCA) is amultivariate dimensionality reduction technique
in which the dimension of original, usually correlated, variable
space, X ¼ Xðx1, x2, ..., xmÞ ∈ Rmis transformed into a new

Table 2. Thirty Outlying Genes out of 129 Genes (F-Quantile = 0.99) Identified from the 4254 Gene Group by Mahalanobis
Distance-Based Outlier Analysis

gene ID description function (class)

YPO3300 S-ribosylhomocysteinase, autoinducer-2 production protein amino acid metabolism; cysteine and methionine metabolism

YPO1299 1-phosphofructokinase energy metabolism; glycolysis

YPO3279 putative sigma 54 modulation protein genetic information processing; translation

YPO1300 (fruA) fructose-specific PTS system IIBC component metabolism; environmental information processing; membrane transport;

phosphotransferase system (PTS)

YPO1298 bifunctional fructose-specific PTS IIA/HPr protein metabolism; environmental information processing; membrane transport;

phosphotransferase system (PTS)

YPO1300 fructose-specific IIBC component; PTS system transport/binding protein

YPO1993 putative dehydrogenase unknown

YPO3711 maltoporin transport/binding protein

YPO4080 alpha-amylase protein degradation of polysaccharides

YPO0286 putative coproporphyrinogen III oxidase biosynthesis of cofaacofactors, prosthetic groups and carriers

YPO3954 putative gluconate permease transport/binding proteins

YPO1994 hypothetical protein unknown

YPO1507 galactose-binding protein transport/binding proteins

YPO0832 putative tagatose 6-phosphate kinase degradation of carbon compounds

YPO3788 5-methyltetrahydropteroyltriglutamate�
homocysteine methyltransferase

aspartate family biosynthesis

YPO1995 hypothetical protein unknown

YPO3681 putative insecticidal toxin cell processes�pathogenicity

YPO3953 putative gluconokinase degradation of carbon compounds

YPO3643 major cold shock protein Cspa2 adaptions and atypical conditions

YPO2705 conserved hypothetical protein unknown

YPO0276 putative LysR-family transcriptional regulator broad regulatory functions

YPO3644 major cold shock protein Cspa1 adaptions and atypical conditions

YPO1222 outer membrane protein C, porin cell envelop

YPO0284 orfY protein in hemin uptake locus unknown

YPO1996 hypothetical protein unknown

YPO1303 pH 6 antigen precursor (antigen 4) (adhesion) surface polysaccharides, lipopolysaccharides and antigens

YPO2012 putative membrane protein membranes, lipoproteins, and porins

YPO0003 aspartate�ammonia ligase aspartate family biosynthesis

YPO3714 maltose-binding periplasmic protein precursor transport/binding carbohydrates, organic acids and alcohols

malF putative maltodextrin transport permease transport/binding carbohydrates, organic acids and alcohols

The information on the gene function was achieved as described.17 As the criteria of fold change (FC) and p-value, if a gene
corresponds to either FC < 1.3 or p-value >0.05 under all five different experiments, then the gene was removed from the outlier list.
Thus, all the genes up-regulated in at least one of the five experiments have been considered as significant ones.
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latent variable space referred to as principal components (PCs),
Y ¼ Yðy1, y2, ..., ynÞ ∈ R n, that is,Rm f R n (where m g n),
as the independent linear combination of original variables. The
data matrix X is decomposed into two matrices U and V, which
are orthogonal each other. That is,

X ¼ USVT ð1Þ
Where, S is the diagonal matrix of the eigenvalues. The product
US and V are called the score matrix and loading matrix,
respectively. The eigenvectors of the covariance matrix consist
of the PCs. The first PC accounts for the maximum variance
(eigenvalue) in the original data set. The second PC is orthogo-
nal (i.e., uncorrelated) to the first one and accounts for most of
the remaining variance. Thus, the nth PC is orthogonal to all
others and has the nth largest variance in the set of PCs.
Transforming the original to this new coordinate system in the
high dimension, PCA seeks the operational benefits for the
visualization and recognition of the major pattern of data structure
in the reduced dimensional PC space with minimum information

loss. Recently, some results have shown that PCA can be effectively
used as a clustering tool for microarray data by combining with
additional criteria of the threshold value for the determination of
the genes differentially expressed but is not impressive by itself.10,11

Mahalanobis Distance-Based Outlier Detection. In the multi-
variate data, covariance matrix is taken into account and the
differentially expressed genes that resolve a certain distance from
the average value are selected. One of the classical distance met-
rics is Mahalanobis distance. The Mahalanobis distance between
genes G1 and G2 (both are vectors) is a distance measure which
reflects the similarity between genes as the proximity of them in
the expression vector space. It is defined as

dðG1,G2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG1 �G2ÞTC�1ðG1 �G2Þ

q
ð2Þ

where C is the variance�covariance matrix, which is defined as

C ¼ σ2
1 F12σ1σ2

F12σ1σ2 σ2
2

" #
ð3Þ

Table 3. Thirty Genes Identified from the 4254 Gene Group by Gene Shaving Methoda

gene ID description function (class)

YPO1654 beta-D-galactosidase degradation of carbon compounds

YPCD1.08c hypothetical protein NaN

YPO0158 siroheme synthase heme and porphyrin biosynthesis

YPO3272 putative acetyltransferase unknown

YPO0440 purine nucleoside phosphorylase salvage of nucleosides and nucleotides

YPO3279 putative sigma 54 modulation protein broad regulatory functions

YPO0285 conserved hypothetical protein unknown

YPO3713 hypothetical protein unknown

YPO3712 maltose/maltodextrin transport system

ATP-binding protein

environmental information processing; membrane transport

YPO4080 periplasmic alpha-amylase precursor carbohydrate metabolism; starch and sucrose metabolism

YPO3711 maltoporin transport/binding carbohydrates, organic acids and alcohols

YPO1507 galactose-binding protein environmental information processing; membrane transport; transporters

YPO3643 major cold shock protein CspA2 genetic information processing; transcription; transcription factors

YPO1299 1-phosphofructokinase carbohydrate metabolism, fructose and mannose metabolism

YPO1298 bifunctional fructose-specific

PTS IIA/HPr protein

carbohydrate metabolism; fructose and mannose metabolism;

environmental information processing; membrane transport; transporters

YPO2180 bifunctional acetaldehyde-

CoA/alcohol dehydrogenase

carbohydrate metabolism ; glycolysis/gluconeogenesis

YPO3954 putative gluconate permease transport/binding carbohydrates, organic acids and alcohols

ompC outer membrane porin protein C environmental information processing ; signal transduction ; two-component system

YPO1994 hypothetical protein unknown

YPO4012 two-component system response regulator environmental information processing; signal transduction; two-component system

YPO0410 putative ABC transporter permease protein environmental information processing; membrane transport; transporters

YPO0436 deoxyribose-phosphate aldolase carbohydrate metabolism; pentose phosphate pathway

YPO1138 galactose-1-phosphate uridylyltransferase carbohydrate metabolism; galactose metabolism

YPO3024 probable N-acetylneuraminate lyase carbohydrate metabolism; amino sugar and nucleotide sugar metabolism

YPO1139 UDP-galactose-4-epimerase carbohydrate metabolism; galactose metabolism; amino sugar and

nucleotide sugar metabolism

YPO0407 autoinducer-2 modifying protein LsrG unknown

YPO2012 putative membrane protein membranes, lipoproteins and porins

YPO0409 putative periplasmic solute-binding protein environmental information processing; membrane transport; transporters

YPO1137 galactokinase carbohydrate metabolism; galactose metabolism; amino sugar and nucleotide sugar metabolism

YPO3300 autoinducer-2 production protein amino acid metabolism; cysteine and methionine metabolism
aThe information on the gene function was achieved as described.17
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where σ1
2 and σ2

2 are the variances and F12σ1σ2 is the covar-
iance, respectively. If the covariance matrix is a diagonal unit
matrix, then Mahalanobis distance is identical to Euclidean
distance. This Mahalanobis distance can be calculated in either
original data space or principal component (PC) space. The
values are in fact equal when all PCs are taken into account.12

Gene Shaving (GS). Gene shaving (GS) is a gene clustering
algorithm in which the PCA technique is iteratively applied to
search subgroups of genes with higher similarity than others from
the original gene data set. This GS method was first proposed by
Hastie et al.13 Looking for a group of genes, St (where t is the
number of genes of the cluster) with highest variance, that is,
eigen genes, the genes with lowest correlation with the eigen
genes are cut out (i.e., shaved off) through an iterative multistep
elimination procedure. The size of the cluster, t (i.e., the number
of eigen genes in a cluster), is determined through the gap
statistics using the variances for subsets of the genes which
consist of a k � l gene-expression (Gij) matrix.

VW ¼ 1
l ∑

l

j¼ 1

1
t ∑i ∈ St

ðGij � G̅jÞ2
" #

ð4Þ

VB ¼ 1
l ∑

l

j¼ 1
ðG̅j � G̅Þ2 ð5Þ

VT ¼ 1
tl ∑i ∈ St

∑
l

j¼ 1
ðGij � G̅Þ2 ð6Þ

where VW, VB, and VT (= VW + VB) denote the within, between,
and total variances for gene clusters, respectively. The ratio of
VB/VW (orVB/VT) is used as themeasure to determine the size, t,
of a gene cluster St.
Self-Organizing Map (SOM). Self-organizing map (SOM), or

Kohonen map, is a nonparametric learning algorithm in which the
original high-dimensional data space,X ¼ Xðx1, x2, ..., xmÞ ∈ Rm,
is mapped preserving the topology of the data structure on the
prespecified low-dimensional, 2-D planar geometry representations,
X0 ¼ X0ðx0

1, x
0
2 ,.., x

0
mÞ ∈ R 2, namely Rm f R 2. The proto-

type reference vectors are trained by input data vectors andmodified
according to their similarity to the input vector, that is, “self-
organized”. In brief, SOM can be considered as a nonlinear version
of a dimensionality reduction technique such as PCA for linear data
space.14,15 However, the two algorithms are dissimilar in that SOM
finds the locally based principal pattern, which takes into account
only the neighboring data, whereas the latter seeks the principal
directions, which considers the entire data structure. The distance
between original input vector xB and output parametric vector mBc is

jj xB� mBcjj ¼ min
i
fjj xB� mBijjg ð7Þ

where xB and mBc denote input and output vectors, respectively.
Similarity measure in the SOM is based on the Euclidian

distance. In this paper, the batch learning method that is
computationally effective was used for the outlier detection.
The difference of this simpler version of the SOM algorithm is
to use the input vectors at the same time. For the analysis, a SOM
toolbox for Matlab environment was used.16

’RESULTS AND DISCUSSION

The analysis of transcription-level data to identify differentially
expressed genes across the individual microarray experiments has
long been a statistical and computational challenge. Figure 2
shows the variation of gene-expression levels in terms of the fold
change achieved across five different samples. The fold change
(FC) of gene-expression levels varies apparently independently
in different samples along either positive (i.e., up-regulated) or
negative (i.e., down-regulated) direction. That is, a gene that is
up-regulated (i.e., FCJ 2) in one experimental condition might
be down-regulated in other conditions. Thus, the regulation
behavior of genes measured under various array conditions
cannot be directly analyzed with thresholding by a univariate-
based approach. In fact, rather different results are often achieved
using different analytical methods for the expression data with
multivariate nature. In this study, the gene-expression data
obtained from five microarray experiments were explored by
using three multivariate data mining tools, that is, PCA�
Mahalanobis distance measure, GS, and SOM. The main differ-
ence among them is originated from that of the algorithms for
clustering genes in which the original input space is mapped onto

Figure 6. Self-organizing map (SOM) produced by the batch-type
learning algorithm: (a) a schematic of SOM constructed in the batch-
type algorithm; the data in the multidimensional original space are
compressed into the reduced dimension (2-D) of predefined grid
structure by topologically mapping with Euclidean distance between
data points as the similarity measure, and (b) unified-distance matrix
(U-matrix); note that, in theU-matrix, there exist additional grids between
neighboring grid units of the SOMwith themap size of (25� 13) to show
the distance between the grids. In the U-matrix, it is shown that two bright
regions of the left and right bottom of the map that indicate the clusters
of outlying genes that are far apart from other genes.
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the reduced-dimensional output space and the distance among
genes is measured. Figure 3 shows the distribution of gene-
expression data points that correspond to each gene characterized
by the expression level measured from different microarray experi-
ments. The regulation behavior of differentially expressed genes can
be readily identified by the outlying position of the corresponding
genes from other clustered genes in the expression space.
Principal Component Analysis.One of the inherent assump-

tions of the PCA approach is that most of the information of the
data structure is in the first few PCs, and the information carried
by the rest of the PCs is less significant. Recently, Yeung and
Ruzzo showed that simple coordinate transformation of original
microarray data space to the corresponding PC space may not
improve the performance of the microarray analysis.11 The use of
the first few PCs (usually two or three PCs) to capture the major
features of microarray data is often not effective due to the
independency of the experiments. That is, the transformation of
original data space into the orthogonal PC space for the purpose
of dimensionality reduction results in inevitable information loss
without any significant benefits in the interpretation. One reason
might be that the individual sample or experiment (each column
of data matrix) is already designed to be independent of other
samples or experiments.

Figure 4 shows the pairwise plots of the distribution of the
genes in the PC space. There is no apparent change in the data
structure, compared to Figure 3. The variation of the data
explained by each PC (a bar chart on the upper right panel)
indicates that even the variation accounted for by the fifth PC is
not negligible. Also, considering that one of the assumptions of
PCA is the Gaussian distribution of the data, it is shown that the
PC projection of microarray data fails to find any useful
information. When investigating differentially expressed genes
comparing different treatment conditions, one will observe that a
gene is expressed as highly up- or down-regulated (meeting the
criterion of p-value) under one treatment but not other treat-
ments. In this case, designating the differentially expressed genes
as an outcome of combining the results of multiple conditions is
an important aspect of the microarray analysis. We first imple-
mented the analysis without regarding the FC and p-value cutoff,
and then after the outliers are detected, the criteria of FC > 1.3
and p-value <0.05 were employed.
Outlier Detection by Mahalanobis Distance. In both the

original input space and the corresponding PC space, the
distance between genes was measured by using Mahalanobis
distance and the list of outlying genes identified by this distance
metric (F-quantile = 0.99) was compared. The Mahalanobis

Table 4. Thirty Genes Identified from the 4254 Gene Group by Self-Organizing Mapa

gene ID description function (class)

YPO0625 hypothetical protein unknown

YPO0821 hypothetical protein unknown

YPO0833 putative phosphosugar isomerase degradation of carbon compounds

agaY tagatose-bisphosphate aldolase carbohydrate metabolism

YPO0823 putative exported protein cell envelop

YPO0626 hypothetical protein unknown

YPO0624 putative membrane protein cell envelop

malG maltose transport system permease protein transport/binding proteins

YPO0822 putative exported protein cell envelop

YPO3715 maltose transporter membrane protein environmental information processing; membrane transport; transporters

YPO0623 putative aminotransferase unknown

YPO3716 maltose transport system permease protein MalG transport/binding proteins

YPO3712 maltose/maltodextrin transport ATP-binding protein transport/binding proteins

YPO0844 putative aldolase degradation of carbon compounds

malF putative maltodextrin transport permeaase transport/binding proteins

YPO3200 putative maltodextrin glucosidase degradation of carbon compounds

YPO0845 ThiJ/PfpI-family thiamine biogenesis protein biosynthesis of cofactors, prosthetic groups and carriers

YPO3714 maltose-binding periplasmic protein precursor transport/binding proteins

malK maltose/maltodextrin transport ATP-binding protein transport/binding proteins

YPO0325 single-strand binding protein DNA replication, restriction/modification, recombination and repair

YPO0931 S-adenosylmethionine synthetase central intermediary metabolism

YPO3710 maltose operon periplasmic protein transport/binding proteins

YPO3681 putative insecticidal toxin pathogenicity

YPO1858 putative exported protein cell envelop

YPO0324 excinuclease ABC subunit A DNA replication, restriction/modification, recombination and repair

YPO3788 5-methyltetrahydropteroyltriglutamate�homocysteine

methyltransferase

aspartate family biosynthesis

YPO0832 putative tagatose 6-phosphate kinase degradation of carbon compounds

YPO3711 maltoporin transport/binding proteins

YPO4080 alpha-amylase protein degradation of polysaccharides

YPO3300 autoinducer-2 production protein unknown
aThe information on the gene function was achieved as described.17
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distance of all the genes in the original space and the equivalent
distance measure in the PC space (Euclidean norm) provide the
identical list of outlying genes. Figure 5 represents the outlying
genes determined by the cutoff line (based on the F-quantile
of 0.99). The partial list of 129 genes is shown in Table 2. As
mentioned, since the results are the same in both cases, only one
table is provided.
Gene Shaving. In the GS analysis as a nonparametric cluster-

ing method of orthogonal subgroups, a gene group with the
largest PC, which is referred to as eigen genes, is selected. Then a
subgroup of the genes having the lowest correlation with the
eigen genes is sought as the distinctive gene cluster. This filtering
process is iterated with the rest of the genes. Biologically signi-
ficant genes can be detected during this GS process. Although
this method uses the PCA as the main clustering algorithm of
determining the major pattern of data, in our study, the criterion
for the detection of outlying data is applied as a way to find the
differentially expressed genes. The list of active genes identified
by the GS method is shown in Table 3.
Self-Organizing Map. SOM projects the input data space

onto the two-dimensional grid structure. Figure 6a schematically
illustrates the clustering implemented by SOM. The map grid is
the fixed matrix structure on which the original input vectors are
sorted out by iterative training. The size of the map was
determined empirically. That is, the map size was approximately
determined as 5(x)1/2, where, x denotes the number of genes, x =
4254 for the data set we used. Thus, the map size is 325; the
dimensional ratio (= 25� 13) of the map was determined as the
ratio of the first and second highest eigenvalues of the covariance
matrix. The U-matrix of Figure 6b shows the distances between
map grid units facilitating the identification of dissimilar groups
on the map. In the grid structure of the U-matrix, there are
additional grids for the representation of the distance between
map grids. Although each unit of grids is colored with one color,
the density of data points in individual grids is different from each
other. The distinct gene group verified from the classification of
the SOM in Figure 6b, those included in bright-color grids of the
map, is listed in Table 4.
The Genes Identified as Highly Regulated Genes from the

Three Methods. The results from three different analysis
methods, that is, Mahalanobis distance-based outlier analysis,
GS, and SOM, were summarized in Table 5. Among them, the

commonly detected genes from multiple, more than two, meth-
ods can be considered as the more important genes. There were
only two genes that were identified as outlying genes from all three
methods: YPO3300 (AI-2 production protein) and YPO3711
(outer membrane protein). Fourteen genes, that is, YPO3279,
YPO1298, YPO4080, YPO3954, YPO1994, YPO1507, YPO0832,
YPO3788, YPO3681, YPO3643, YPO2012, malF, YPO1299, and
YPO3714 were selected as common by two different methods.
Thus, a total of sixteen genes can be considered as the most
significant gene group. Among the genes identified as highly
regulated, YPO3300 (in the group A) and YPO1994 (in the group
B,C,D) have been identified as the genes leading the transcriptional
induction in human plasma.18 It is also seen that many genes in the
group A, B, C, and D are related to membrane transport (e.g.,
YPO1507, YPO1298, YPO2012, YPO3711, YPO3714, andmalF).
As a separate note, among the three outlier detectionmethods, self-
organizing maps (SOM) showed the highest detection efficiency
for up-regulated geneswhichmeet the criteria of fold change (>1.3)
and p-value (<0.05). Also, many of the coregulated genes (mainly
up-regulated genes under both triple mutants and ΔluxS mutant
conditions) were automatically identified by SOM.

’CONCLUSIONS

In this paper, we investigated the gene-expression data of Y.
pestis achieved from oligonucleotidemicroarrays to identify genes
that are significantly differentially expressed during quorum
sensing that may be useful as potential vaccine candidates. The
combined use of principal component analysis, self-organizing
maps, gene shaving, and outlier analysis algorithms shown in this
paper have facilitated us to screen out biologically significant genes
from combinatorial microarray data as the starting point worthy of
further study. Under the condition of limited available biological
information, we suggest that the proper outcome can best be
achieved by focusing with a priority on the genes commonly
indicated by the statistical learning algorithms in which both linear
and nonlinear metric of gene-expression space are considered.
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Table 5. Ranking of Differentially Expressed Genes Commonly Detected from Multiple Analysis Methodsa

group A group B, C, D group E, F, G (PCA only) group E, F, G (gene shaving only) group E, F, G (SOM only)

gene ID gene ID gene ID gene ID gene ID

YPO3300 YPO3279 YPO3788 YPO1222 YPO2705 YPO1654 YPO4012 YPO0625 YPO3716

YPO3711 YPO1298 YPO3681 fruA YPO0276 YPCD1.08c YPO0410 YPO0821 YPO3712

YPO4080 YPO3643 YPO1300 YPO3644 YPO0158 YPO0436 YPO0833 YPO0844

YPO3954 YPO2012 YPO1993 YPO0284 YPO3272 YPO1138 agaY YPO3200

YPO1994 malF YPO0286 YPO1996 YPO0440 YPO3024 YPO0823 YPO0845

YPO1507 YPO1299 YPO1995 YPO1303 YPO0285 YPO1139 YPO0626 malK

YPO0832 YPO3714 YPO3953 YPO0003 YPO3713 YPO0407 YPO0624 YPO0325

YPO3712 YPO0409 malG YPO0931

YPO2180 YPO1137 YPO0822 YPO3710

ompC YPO3715 YPO1858

YPO0623 YPO0324
aGroup A (the highest significant gene group) is a list of genes detected by all three methods. Group B, C, D (the second gene group) is a list of genes
detected by two different methods. Group E, F, G (the third gene group) is a list of genes detected by only one method.
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